Baseball
Add news
News

Dying Former CIA Worker Has Nothing To Lose And Reveals Dark Secrets About Area 51 & Aliens

0 2

A gleaming new Hubble Space Telescope image captures the glow of thousands upon thousands of stars in an ancient globular cluster near the Milky Way’s heart.

A globular cluster is a massive collection of stars that are attracted in close and tied together by their mutual gravitation, with many stars only a light-year or two apart. The globular cluster in the new Hubble Space Telescope image, known as Pismis 26, was discovered in 1959 by astronomer Paris Pismis at the Tonantzintla Observatory in Mexico.The stars in Pismis 26 have a nearly spherical structure. The cluster appears to be mostly red stars, with a few brighter blue stars along the edges. These colors are due, in part, to the cluster’s age, which is estimated to be around 12 billion years, implying that it contains many of the oldest stars in our galaxy, if not the universe. These stars are most likely a much deeper red than the bright-blue stars typical of large, young, fast-burning stars that die out much sooner, or the typical yellow star that straddles the two.

Additionally, the cluster is heavily metallic, which means that its stars have higher concentrations of elements heavier than hydrogen and helium than stars like the sun do. According to a NASA statement, scientists believe these stars are particularly rich in nitrogen, implying that the globular cluster’s star population spans a range of ages.

Furthermore, the cluster’s color is influenced by a phenomenon known as reddening, which occurs when dense stellar dust blocks shorter-wavelength blue light while allowing longer-wavelength red light to pass through more easily.

Pismis 26 is close to the galactic bulge that surrounds Sagittarius A* (Sgr A*), the Milky Way’s supermassive black hole. Because of the presence of Sgr A* and its incredible gravity, as well as that of all the material surrounding it in the bulge and the dense sphere of stars it contains, this region of the galaxy is especially dust-heavy.

Over the coming months, a celestial object that was last observed when Neanderthals walked the planet will be visible if you look up into the sky.

A comet was discovered on March 2, 2022, by astronomers at the Zwicky Transient Facility using a wide-field survey camera. The comet is estimated to orbit the Sun once every 50,000 years, which means the last time we saw it was during the Upper Paleolithic period, when humans began to expand across Asia and Europe.

The comet, dubbed "C/2022 E3 (ZTF)," is currently too faint to be seen without a telescope. However, it is possible to see with the naked eye between the end of January and the beginning of February 2023.The comet is currently approaching perihelion (its closest approach to the Sun), which will take place on January 12. On February 1, it will be closest to Earth, known as perigee. It may be visible to the naked eye at this point, though that it would most likely look like a smudge of chalk dust on a chalk board rather than the dazzling display put on by comet Neowise.

The comet, which was originally thought to be an asteroid before the coma was spotted, was discovered using a 1.2 meter telescope. It will pass Earth safely at a distance of approximately 42.5 million kilometers (26.4 million miles) on February 1. The comet is expected to become brighter than magnitude 6 and thus become visible to the naked eye from a dark-sky location.

  • Colin JacobsPostdoctoral Researcher in Astrophysics, Swinburne University of Technology
  • Karl GlazebrookARC Laureate Fellow & Distinguished Professor, Centre for Astrophysics & Supercomputing, Swinburne University of Technology

It is no exaggeration to say the James Webb Space Telescope (JWST) represents a new era for modern astronomy.

Launched on December 25 last year and fully operational since July, the telescope offers glimpses of the universe that were inaccessible to us before. Like the Hubble Space Telescope, the JWST is in space, so it can take pictures with stunning detail free from the distortions of Earth’s atmosphere.

However, while Hubble is in orbit around Earth at an altitude of 540km, the JWST is 1.5 million kilometres distant, far beyond the Moon. From this position, away from the interference of our planet’s reflected heat, it can collect light from across the universe far into the infrared portion of the electromagnetic spectrum.

This ability, when combined with the JWST’s larger mirror, state-of-the-art detectors, and many other technological advances, allows astronomers to look back to the universe’s earliest epochs.

As the universe expands, it stretches the wavelength of light travelling towards us, making more distant objects appear redder. At great enough distances, the light from a galaxy is shifted entirely out of the visible part of the electromagnetic spectrum to the infrared. The JWST is able to probe such sources of light right back to the earliest times, nearly 14 billion years ago.

The Hubble telescope continues to be a great scientific instrument and can see at optical wavelengths where the JWST cannot. But the Webb telescope can see much further into the infrared with greater sensitivity and sharpness.

Let’s have a look at ten images that have demonstrated the staggering power of this new window to the universe.Despite years of testing on the ground, an observatory as complex as the JWST required extensive configuration and testing once deployed in the cold and dark of space.

One of the biggest tasks was getting the 18 hexagonal mirror segments unfolded and aligned to within a fraction of a wavelength of light. In March, NASA released the first image (centred on a star) from the fully aligned mirror. Although it was just a calibration image, astronomers immediately compared it to existing images of that patch of sky – with considerable excitement.

2. Spitzer vs MIRISpace Telescope, and JWST on the right. The contrast in depth and resolution is dramatic. NASA/JPL-Caltech (left), NASA/ESA/CSA/STScI (right)

This early image, taken while all the cameras were being focused, clearly demonstrates the step change in data quality that JWST brings over its predecessors.

On the left is an image from the Spitzer telescope, a space-based infrared observatory with an 85cm mirror; the right, the same field from JWST’s mid-infrared MIRI camera and 6.5m mirror. The resolution and ability to detect much fainter sources is on show here, with hundreds of galaxies visible that were lost in the noise of the Spitzer image. This is what a bigger mirror situated out in the deepest, coldest dark can do.

3. The first galaxy cluster imageThe galaxy cluster with the prosaic name of SMACS J0723.3–7327 was a good choice for the first colour images from the JWST.

The field is crowded with galaxies of all shapes and colours. The combined mass of this enormous galaxy cluster, over 4 billion light years away, bends space in such a way that light from distant sources in the background is stretched and magnified, an effect known as gravitational lensing.

These distorted background galaxies can be clearly seen as lines and arcs throughout this image. The field is already spectacular in Hubble images (left), but the JWST near-infrared image (right) reveals a wealth of extra detail, including hundreds of distant galaxies too faint or too red to be detected by its predecessor.

4. Stephan’s QuintetThese images depict a spectacular group of galaxies known as Stephan’s Quintet, a group that has studying the way colliding galaxies interact with one another gravitationally.

On the left we see the Hubble view, and the right the JWST mid-infrared view. The inset shows the power of the new telescope, with a zoom in on a small background galaxy. In the Hubble image we see some bright star-forming regions, but only with the JWST does the full structure of this and surrounding galaxies reveal itself.

5. The Pillars of CreationThe ‘Pillars of Creation’, a star-forming region of our galaxy, as captured by Hubble (left) and JWST (right). NASA, ESA, CSA, STScI; Joseph DePasquale (STScI), Anton M. Koekemoer (STScI), Alyssa Pagan (STScI)

The so-called Pillars of Creation is one of the most famous images in all of astronomy, taken by Hubble in 1995. It demonstrated the extraordinary reach of a space-based telescope.

It depicts a star-forming region in the Eagle Nebula, where interstellar gas and dust provide the backdrop to a stellar nursery teeming with new stars. The image on the right, taken with the JWST’s near-infrared camera (NIRCam), demonstrates a further advantage of infrared astronomy: the ability to peer through the shroud of dust and see what lies within and behind.

6. The ‘Hourglass’ ProtostarThis image depicts another act of galactic creation within the Milky Way. This hourglass-shaped structure is a cloud of dust and gas surrounding a star in the act of formation – a protostar called L1527.

Only visible in the infrared, an "accretion disk" of material falling in (the black band in the centre) will eventually enable the protostar to gather enough mass to start fusing hydrogen, and a new star will be born.

In the meantime, light from the still-forming star illuminates the gas above and below the disk, making the hourglass shape. Our previous view of this came from Spitzer; the amount of detail is once again an enormous leap ahead.

7. Jupiter in infraredThe Webb telescope’s mission includes imaging the most distant galaxies from the beginning of the universe, but it can look a little closer to home as well.

Although JWST cannot look at Earth or the inner Solar System planets – as it must always face away from the Sun – it can look outward at the more distant parts of our Solar System. This near-infrared image of Jupiter is a beautiful example, as we gaze deep into the structure of the gas giant’s clouds and storms. The glow of auroras at both the northern and southern poles is haunting.

This image was extremely difficult to achieve due to the fast motion of Jupiter across the sky relative to the stars and because of its fast rotation. The success proved the Webb telescope’s ability to track difficult astronomical targets extremely well.

8. The Phantom Galaxy

Tags: science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science,science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science, science, astronomy, NASA, UFOs, aliens, space, space science, science, Earth, Earth science, breaking news, science,

Comments

Комментарии для сайта Cackle
Загрузка...

More news:

Read on Sportsweek.org:

Other sports

Sponsored